If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2-42x-20=0
a = 19; b = -42; c = -20;
Δ = b2-4ac
Δ = -422-4·19·(-20)
Δ = 3284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3284}=\sqrt{4*821}=\sqrt{4}*\sqrt{821}=2\sqrt{821}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{821}}{2*19}=\frac{42-2\sqrt{821}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{821}}{2*19}=\frac{42+2\sqrt{821}}{38} $
| 7x-5(2x-4)=x+4 | | (8x)+6=(3x)-7 | | 4/3+2/3x=49/18 | | 4,5/12=6/x | | 5x^2+3x-4=6 | | 8(2n-10)=10n+16 | | (1/3x)+(1/x)=2 | | 1/3x+1/x=2 | | (-8x-5)x6x+3(-8x-5)=0 | | 5x+8-4x=6 | | 4/3+2/3x=7/6x+5/6 | | 4/3+2/3x=49/18+7/6x+5/6 | | 29-5v=3v+5 | | 8/5x=-1/2x | | 3(x-4)+5=x+3 | | 15-v=4v | | 16v=63+7v | | 6(q-8)=24 | | 6(e+5)=48 | | 4x²-49=0 | | x+3/4x+2(3/4)x=26 | | 5x+37=167 | | 5x+37=137 | | 5x+22=152 | | 2^x=3^x+3 | | 2(x-4)=3(x-8 | | 3u=4(5)+(-2) | | 9+11x=-1=x | | 3(3)=4r+3 | | 3x—13=x-1 | | 6=-2x*26 | | 9k+6=24 |